
Classification of Programming Languages

Programming languages are classified into two main categories:

1. Low-Level Languages

2. High-Level Languages

1. Low-Level Languages

Low-level languages are closer to machine hardware and are difficult for humans to

understand.

Types of Low-Level Languages:

1. Machine Language:

o It is written in binary (0s and 1s).

o It is directly understood by the computer.

o It is platform-dependent.

o Debugging and error correction are difficult.

2. Assembly Language:

o Uses mnemonics (short codes) instead of binary.

o Requires an assembler to convert it into machine language.

o It is also platform-dependent but easier than machine language.

Characteristics of Low-Level Languages:

• Platform-dependent.

• Fast execution speed.

• Difficult error detection and correction.

• Requires knowledge of computer architecture.

2. High-Level Languages

High-level languages are closer to human language and easier to learn.

Types of High-Level Languages:

1. Procedure-Oriented Programming (POP):

o Definition: A programming approach focused on procedures (functions).

o Features:

▪ Uses functions to divide tasks.

▪ Follows a top-down approach.

▪ Example languages: C, BASIC, FORTRAN.

2. Object-Oriented Programming (OOP):

o Definition: A programming approach focused on objects and data.

o Features:

▪ Uses objects that contain both data and methods.

▪ Follows a bottom-up approach.

▪ Example languages: Java, Python, C++.

3. Structure-Oriented Programming:

o Uses structured control flow (loops, conditionals, functions).

o Example languages: Pascal, COBOL.

Translators of Programming Languages

A translator converts high-level language into machine code. The three main types of

translators are:

1. Compiler:

o Translates the entire code at once before execution.

o Detects all errors at once

o Faster execution

o Example: C, C++.

2. Interpreter:

o Translates and executes the code line by line.

o Detects errors statement by statement.

o Slower execution

o Example: Python, JavaScript.

3. Assembler:

o Converts assembly language into machine language.

o Example: MASM (Microsoft Assembler).

Difference Between Compiler and Interpreter

Feature Compiler Interpreter

Translation Entire code at once Line by line

Speed Faster execution Slower execution

Error Detection shows all errors at once shows errors one by one

Example Languages C, C++ Python, JavaScript

Difference Between POP and OOP

Feature POP OOP

Focus Functions Data & Objects

Approach Top-down Bottom-up

Reusability Less More

Example Languages C, FORTRAN Java, C++

Principles of OOP

1. Encapsulation:

o The concept of binding data and methods together in a class.

o It restricts direct access to some of an object's components.

o Example: class (as it contains many variables, objects and functions)

o Benefits:

▪ Improves code maintainability.

▪ Enhances security.

2. Inheritance:

o The mechanism by which a new class (child class/ sub class/ derived class)

derives properties and behaviour from an existing class (parent class/ base

class/ super class).

o It promotes code reusability and hierarchical relationships.

o Example: A Car class inheriting from a Vehicle class.

o Types of Inheritance:

▪ Single Inheritance

▪ Multiple Inheritance

▪ Multilevel Inheritance

▪ Hierarchical Inheritance

▪ Hybrid Inheritance

o Benefits:

▪ Reduces redundancy by reusing existing code.

▪ Helps in building a logical structure for programs.

3. Polymorphism:

o The ability of a function, method, or object to take multiple forms.

o It allows the same interface to be used for different underlying forms (data

types).

o Types of Polymorphism:

▪ Compile-time Polymorphism (Method Overloading)

▪ Runtime Polymorphism (Method Overriding)

o Benefits:

▪ Improves flexibility and scalability of code.

▪ Enhances maintainability by allowing modifications without affecting

existing code.

4. Data Abstraction:

o The process of hiding implementation details and showing only necessary

features.

o Achieved through abstract classes and interfaces.

o Example: A BankAccount class exposing methods like deposit() and withdraw(),

but hiding internal implementation details.

o Benefits:

▪ Reduces code complexity.

▪ Enhances code reusability and security.

Difference between High Level Language and Low Level Language

Feature High-Level Language Low-Level Language

Abstraction Closer to human language,

easier to understand.

Closer to machine code, harder to

read.

Execution Speed Slower due to abstraction and

compilation.

Faster as it directly interacts with

hardware.

Portability Highly portable, runs on

multiple platforms.

Less portable, depends on hardware

architecture.

Examples C, Java, Python, JavaScript. Assembly Language, Machine Code.

Ease of Coding Easier, with simpler syntax

and built-in functions.

Complex, requires detailed hardware

knowledge.

Error Fixing/

Debugging

Easier Harder

Use Case Software development, web

development, AI, etc.

Embedded systems, OS

development, hardware

programming.

Advantages and Limitations of High-Level and Low-Level Languages

High-Level Languages

Advantages:

1. Easy to Learn & Use – Uses human-readable syntax, making it easier for

programmers.

2. Portability – Can run on different hardware with little or no modification.

3. Faster Development – Comes with built-in libraries and functions, reducing coding

effort.

4. Better Debugging & Maintenance – Easier to debug and maintain due to structured

programming.

Limitations:

1. Slower Execution – Needs to be compiled or interpreted, making it slower than low-

level languages.

2. Less Control Over Hardware – Cannot directly manipulate hardware resources

efficiently.

3. More Memory Usage – Uses extra memory for abstraction, making it less efficient in

resource-constrained environments.

4. Dependency on Compilers/Interpreters – Needs an extra layer

(compiler/interpreter) to convert code into machine language.

Low-Level Languages

Advantages:

1. Fast Execution – Directly interacts with hardware, making it faster than high-level

languages.

2. Greater Hardware Control – Suitable for system programming (e.g., OS, firmware,

embedded systems).

3. No Need for Compilation – In machine code, no translation is needed; in assembly,

minimal translation is required.

Limitations:

1. Complex & Hard to Learn – Requires deep knowledge of hardware architecture.

2. Not Portable – Code is specific to a particular processor or architecture.

3. Difficult Debugging & Maintenance – Harder to read, understand, and modify

compared to high-level languages.

 JVM: Java interpreter is known as JVM (JAVA Virtual Machine)

